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Abstract  The accuracy of 1-D models for composite beams made of lincarly elastic orthotropic
layers is estimated by mecans of the Prager Synge hypercirele method. Statically admissible and
kinematically admissible stress tields are derived. and asymptotic forms tor the error bounds of
O(h 'y and Oth Iy for & | approaching zero are obtained for displacement-based laminated beam
theories where the axial displacement is represented in terms of a given set of coordinate functions
defined over the beam height. The condition of vanishing of relative mean-square error for £// — 0
is used 10 derive the constitutive law for the 1-D model. Expheit forms for the error bounds are
given for the classical lamination theory. first order shear deformation theory and two higher order
theories. Quantitative error bounds are caleulated for simiphy supported multilayered beams under
sinusoidal transverse loading. [tis shown that. starting fron: a wise choice of coordinate functions.
the accuracy of higher order theories can be almost independent of the beam  lamination and up to
150 and 80 times higher than CLT and FSDT. respectivels

I INTRODUCTION

It is widely recognized that a rational foundation of a 1-D theory for the analysis of
homogeneous or laminated beams needs to be validated through the estimate of the error
connected with the approximate character of the model (Koiter. 1970). Following the
classical way, outlined in the Reissner papers (Retssner, 1963). error bounds can be evalu-
ated by constructing statically (S) and kinematicallv (K) admissible 2-D stress fields as
close as possible. Then. the accuracy of a 1-ID beam model. when considered as an approxi-
mation of the exact 2-D solution. can be estimated by means of the hypercircle method by
Prager and Synge (1947).

The effectiveness and comparison of different beam models should be substantiated
by checking their capability of describing both the interior solution and the boundary
effects. Even though boundary effects are usually very significant for orthotropic beams
[see. for instance. Choi and Horgan (1977). Savoia ¢f «f. (1993). Savoia and Tullini (1994)],
with very few exceptions (Rychter, 1987a). error estimates are tvpically restricted to the
interior solution. and in particular to its asymptotic behavior for height-to-length ratio
approaching zero.

In spite of the great potentialitics of the hypercircle method. rather simple theories are
usually considered. For instance. with reference to isotropic beam and plates theories based
on the Kirchhoft-Love hypothesis, Koiter (1970) and Nordgren (1971) derived bounds on
the relative mean-square error of O/ /). where /i is the beam height and / is a measure of
the solution wavelength (Koiter, 1970). Bounds of O(/i= I7) have been obtained by Danielson
(1971). Simmonds (1971) and Ladeveze (1976). Levinson's beam theory accounting for
transverse shear deformations has been considered by Ryvchter (1987b,c). In Duva and
Simmonds (1990. 1991) 4 relative error of O(h" 1Y), where V is uny positive integer, has
been obtained for orthotropic {possibly weak in shear) rectungular beams making use of
an asymptotic expansion of the Airy stress function. Corrections due to 2-D end effects
have been considered in Duva and Simmonds (1992). Energy bounds for classical and
shear-deformable plate theories have been obtained by Nordgren (1972) and Rychter
(1987d.e, 1993) for homogencous anisotropic plates, Ladeveze (1980) showed that, by
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taking the exact edge conditions into account. the error of classical and Reissner~Mindlin
theories cannot be lower than O(/i /). whereas estimates of O(h7//%) must be regarded as
interior-domain error only. since the S admissible stress field used does not usually satisfy
the prescribed edge conditions (for instance. in the case of a traction-free edge). On the
basis of this study. Ladeveze and Pécastaings (1988) proposed an improved version of
Reissner’s theory (called Optimal rersion) for homogeneous isotropic plates with any
boundary conditions which is a second-order approximation of the exact solution. Finally,
more accurate displacement fields have been proposed by Rychter (1988a,b, 1992) so
obtaining error bounds proportional to the height-to-length ratio cubed.

In this context. to the author’s knowledge, the only paper devoted to multilayered
plates is due to Van Keulen (1991) who used Danielson’s technique to obtain an error
bound of O(h° [*) starling from classical lamination theory. Moreover, in Van Keulen
(1991) it has been shown that the ratio A/ for which the classical theory can be used safely
is much smaller for multilayered (especially fiber-reinforced) plates than for homogeneous
isotropic plates under similar conditions.

In none of the referenced papers the error bounds are quantitatively computed, so that
they cannot be used to compare the accuracies of different 1-D models. This problem is
particularly important for laminated beams. In fact. in spite of the completely different
behavior, the same displacement-based models proposed for homogeneous isotropic beams
are usually employed, with the mere adoption of appropriate constitutive laws. For instance,
classical lamination theory (CLT) (Reissner and Stavsky, 1961) and first order lamination
theory (FSDT) (Whitney and Pagano, 1970) represent the straightforward extension of
Kirchhoff and Reissner’s theories to laminated plates. Moreover, Lo er al.’s (1977) higher
order model adopts power functions of increasing order over the whole beam height as
coordinate functions for displacements. These models are not sufficiently accurate for
laminated beams. due to the discontinuity of shear modulus at the layer interfaces requiring
discontinuity of shear strain and. consequently. of derivatives of displacements through the
beam height (Pagano 1969, Savoia and Reddy, 1992 ; Savoia er al., 1994).

In this paper, the accuracy of classical and higher order displacement-based models for
multilayered beams is discussed. First of all. an energy-consistent derivation of equilibrium
equations of 1-D models based on the assumption of transverse inextensibility is performed.
Then, with reference to the interior domain problem, an S admissible stress field and a
lower accuracy K admissible stress field are derived starting from the [-D solution. The
relative mean-square error is dominated by the difference between the shear stress dis-
tributions and is found in the asymptotic form C'- A/l for A/l — 0, where the coefficient C'
depends on the beam lamination and the 1-D model adopted.

Subsequently, an improved K admissible solution is constructed, which can be viewed
as an extension of Danielson’s solution to higher order models for orthotropic multilayered
beams ; the corresponding relative mean-square error is C'" - (h//)%.

The proposed error bounds apply to all the displacement-based models which represent
the axial displacement by means of a linear combination of coordinate functions defined
over the beam height and unknown functions defined along the beam axis. The coefficients
C'and " can be used to measure the accuracy of the 1-D model adopted as the starting
point for deriving the S and the K admissible stress fields. Explicit expressions for these
coeflicients are obtained for CLT. FSDT and higher order theories. including the Lo ez al.
(1977) model (LHDT) and the refined model proposed by the author (Savoia et al.,
1993). The last theory (SHDT) is based on piecewise polynomial C"-continuous coordinate
function for the axial displacement, defined over the whole laminate height and selected so
as to satisfy the shear stress continuity at the layer interfaces.

The accuracy of 1-D models is quantitatively evaluated in Section 7 with reference to
simply-supported multilayered beams under sinusoidal transverse loading. The examples
presented show that, unlike the single-layer models based on C”-continuous coordinate
functions (CLT, FSDT, LHDT). the accuracy of SHDT is substantially independent of the
beam lamination and the degree of orthotropy of layers. Moreover, the lower-accuracy
error bound (related to coeflicient €'y for SHDT is much narrower than for CLT and
LHDT. due to the more accurate representation of shear stresses. On the contrary, improved
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Fig. 1. V-layered orthotropic beam in pline stress.

error bounds for LHDT are only slightly wider than those given by SHDT ; in fact, as
shown in Section 6. the additional axial displacement corresponding to the improved
displacement field for LHDT represents a good approximation of the cross-sectional warp-
ing due to shearing stresses.

The numerical examples presented clearly show that evaluation of the asymptotic
behavior (for //h — ¥ ) only of the error bounds can lead to erroneous conclusions when
beams of finite length are considered. For instance for both isotropic and orthotropic
laminated beams, the error bound of O(/°,1°) for FSDT and for LHDT can be much wider
than that of O(/4/7) for SHDT if L:h < 200 and L /i < 30, respectively. This fact represents
a strong motivation for the development of 1-D higher order beam theories giving ab initio
accurate stress distributions.

2. THE 2-D ELASTICITY PROBLEM FOR MULTILAYERED BEAMS

A multilayered beam of length L and rectangular cross-section is considered, having
unit thickness which is assumed sufficiently small relative to the beam height so that the
plane stress hypothesis applies: x, and v. axes are chosen in the axial and transverse
directions, respectively. Non-dimensional coordinates v = v, Land v = x,/hare introduced
(Fig. 1), so that the domain occupied by the beam reduces to Q = [0, 1] x[—1/2, 1/2].
The beam is composed of NV linearly elastic orthotropic layers, perfectly bonded and
symmetrically arranged with respect to the x-axis: their thicknesses are denoted by 4,
(/= 1....N) and the layer interfaces arc located at v =1, (/i = 1...,N—1). The beam is
subject to two equally distributed transverse loads p(v) 2. acting at the top and bottom
faces of the beam () = +1:2) and tractions f,. /- at the end sections.

The “interior problem™ will be considered here or. equivalently, the prescribed dis-
placement and stress boundary conditions at the beam ends (v = 0. 1) are supposed to have
the same thickness distribution as the K and the S admissible fields that will be further
constructed, respectively.

The governing equations of the 2-D linear elasticity problem are

(A) Equilibrium equations

g, + . = L,g:_.- a.- =0 onQ; (la,b)

g =0 0. =0 alr=y; (2a,b)

Go-o=0. a..=4pv)2 atv= +12 (3a,b)
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(B) Strain-displacement relations and displacement compatibility at the layer interfaces

1 | 1
= U 280, = PR + [ M E22 = g, onQ; (4a,b,c)

~ . 1

=00 Jus=0 aty=y. (5a,b)

(C) Constitutive law for orthotropic luyvers

g =Cren +C e 0= e +Cannntan, 043 = 2C 15128,

(6a,b,c)
where

Con =E th=vivy). Crs: = v Esi(T—viav).

Coran = Es (I =viova). Gy =065 N

and E,. E- are the Young moduli. G, is the shear modulus and v,,, v,, are the Poisson
ratios. In egns (1)—(6), comma means partial derivative and the symbol [ -] stands for jump
of the relevant argument ; moreover ¢ and ¢ are the stress and the linear strain tensor and
u is the displacement vector.

3. ENERGY-CONSISTENT DERIVATION OF 1-D MODELS BASED ON THE ASSUMPTION
OF TRANSVERSE INEXTENSIBILITY

An energy-consistent displacement-based beam model can be obtained by direct sub-
stitution of an « priori assumed displacement field into the 2-dimensional virtual work
statement (Lewinski. 1987). This variational equation states. for the problem at hand:

" | 1 1 \ 1 P p(x
hL ' {()’Hllzl_\ﬁ-(ﬁ:(hl}“‘*' 173\)+m: 173>.,}dQ—LJV [f)»gf)[ﬁ; v a2 0] dX
JQ - \ , ( -

L = h

) r4

12 v =1
‘/’|:J (fra +,f§ﬁz)d,‘":| =0 (8

v =0

to hold for every kinematically admissible displacement field #,, #.. This procedure allows
for the direct derivation of the set of equilibrium equations involving the active part of the
stress tensor only (Truesdell and Noll, 1965). Most of the 1-D beam models are based on
a displacement field which can be written in the form:

u-(x.y) = Lp(v),  w (v vy = hu(x, ), C))

where
ux.v) = —vre(y)+ Z Y ) () = —1re(X)+¥ T (1)x(x). (10)
\ 1

Equation (9a) represents the classical kinematic assumption of beam inextensibility in
the transverse direction, whereas the axial displacement is represented in eqn (10) by means
of a linear combination of coordinate functions 1 and ¢ and unknown functions ¢ and y.
1-D beam models differ in the number n, and the type of coordinate functions ¥, which are
usually selected like the first terms of a complete set of functions, e.g. power functions
(Chepiga, 1977 Lo et al., 1977) or Legendre polynomials (Cicala, 1962) over the whole
beam height. or C’-continuous functions (Murakami. 1986 ; Reddy. 1987 ; Savoia et al.,
1993).
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Substituting eqn (9) in (8) and performing an integration by part yields:

F/h X gy e .
—h L (Lom Vo, )udQ ~ L l.“ (1, ! 2 g dv=po \A,/)” dv

/

{ A |
+h f (0.0, 7 -dy+h )y l i dy[ 0 =00 Yax, ). qx), ()
( P J0

)

Y

where the terms enclosed in the last parentheses are evaluated at the beam end sections.
Substituting eqn (10) in (11) and making use of the fundamental lemma of variational
calculus yields the following set of equilibrium equations for the interior problem :

h¢ (- &
/ ‘ﬂ'—\'u | :(r‘ = - ply)
12 h - . v
j (’[(7|1_\+f71:.y ),Yd_‘_lf’l:\']: "1 — Z KB
12\ E ) (T
Lo |2
= J OH\)'d)'—f g-dr=0
L) 12
N , S 7
(LUH,““(‘W:J ydv—{o,y] .- z o =0 (12)
Jouas P

Equation (12a) does not contain the stress component g... which is a reactive com-
ponent due to the vanishing of the transverse strain ¢.,. Hence, the equilibrium condition
in the transverse direction can be imposed in a global form only. Moreover, eqns (12b,c)
state that the equilibrium in the axial direction is imposed by means of a set of n,+ 1
(linearly independent) equations. It is worth noting that the first term only in eqns (12b.c)
corresponds to the Bollé-Mindlin manner of deriving the equilibrium equations, that is by
taking the higher order moments ol the equilibrium equations over the beam height (Lib-
rescu, 1967 Reissner. 1985). Hence. as pointed out in Lewinski (1987). the Bollé—Mindlin
procedure appears to be energy-inconsistent : it would be energy-consistent only if the shear
stress @,» (written in terms of displacements) satisfies the equilibrium eqns (2a.3a) at the
external faces of the beam and at the laver interfaces. Usually these conditions cannot be
met. unless functions which « priori and individually satisfy equilibrium equations are
adopted as coordinate functions.t

As far as the stress-strain relation is concerned. the introduction of an internal con-
straint in the space of admissible deformations requires a proper definition of constitutive
equations involving the active part of the stress tensor only (Truesdell and Noll, 1965 ;
Podio Guidugli. 1989). i.c. the stress components ¢, and o,-: hence. the constitutive law
for the general layer is written in the form

aro=CHege a0, = 20% 00, (13)

In the following section, the constitutive coethicients ¥, and ¥, will be written
in terms of the 2-D elastic coefficients of eqns (7) by setting the vanishing of the mean-
square error for s L approaching zero.

Making use of egns (9. 10). the stress components (13) are rewritten as:

#The Bollé-Mindlin procedure cannot be used even when eqns (2a.3a) are satisfied by prescribing a fixed
dependence between the unknown functions . © and y (see for instance Andreev and Nemirovskii, 1977
Levinson. 1981 : Rasskazov ¢t «f.. 1983} In fact. the equilibrium equations derived from the virtual work principle
are substantially different both rom the higher order moments of the 2-D equilibrium equations and from eqns
(12) (Savoia er al.. 1994).
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h . ) . , dy’
o = L'( Til=ve —y¢'y). o= (T:|:<'7 —Q+ dl‘x)’ (14)

where prime stands for derivative with respect to v. Substitution of eqns (14) in eqns (12)
yields the governing equations in terms of the unknown functions # and x :

ho ) no. L
] Cha D =) + [ Cia-DL = —plx),

e ) ' , ‘
<L) Chinlo"+Ch- 2Dy “‘(P)'f‘(‘lzlszTwX =0,

/

A , .
(1 ) Chonluy =D x—C H:]:D\.y("l,w(f)) =0. (15)

where the following coeflicients have been introduced :¥

rfL2 C*, .. \ (*(l
D, = Hlidy = ¥
Jo12C05- G
(1Ot dy Chi- 1 S CH
e b0 I L
JoaC s dy ST A G §
[ Chyo TCEy 12 Cx, dip dyT
I, = S LA P - yy'dr. Dy, = 22T T dy (16)
N J 2y .' 2y " Jo 2 Chays dy dy

and C',,,.C"-,, are arbitrary reference elastic moduli. Equations (15) have been derived
by imposing the vanishing of the following coupling coefficients:

e (‘>]le
1, = M ydr = 0. (17
I:( RN

Of course. starting from any set of coordinate functions (), a set of functions ¥(y)
satisfying eqn (17) can be easilv obtained by making use of a Gram-Schmidt orthog-
onalization process.

Equations (15) can be specialized with reference to many higher order beam models,
since only the calculation of the coefhicients reported in eqns (16) is required. For instance,
if no additional terms {1 yx(x) are used for the axial displacement (10), equilibrium eqns
(15) reduce to the ~kinematic version™ (that is to the accuracy of the shear correction
factor) of the First Order (Reissner Mindlin) laminated beam theory:

/

] Fhy
L(VIIZIIDH“]l'"q))I = W/)(’\V)‘ (L) (”HII[\'(‘D”+C‘li212D\\‘(}?/_(p) = 0 (18)

4. ERROR ESTIMATE FOR 1-D BEAM MODELS

The accuracy of 1-D models when considered as approximations to the original 2-D
problem can be estimated by means of the hypersphere theorem of Prager and Synge

+The following property has been used to derive eqn (16¢) ¢

[ dllpf o d'j’ d'lll dwT =12 N dwT
Crop— dy = - S | O - L ——
J . HE di’ ! A ~( Cdr Lil+{('“l’wd_1‘:[‘,,l: ,; ‘{Cl"‘dl d):]L
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(1947). It is particularly meaningful to obtain error bounds for the energy error where the
dependence on the height-to-length ratio of the beam is made explicit.

Denoting by & and & two S and K admissible 2-D stress fields derived from the 1-D
solution, the Prager-Synge hypersphere theorem states that the exact solution ¢ is bounded
by the inequality :

< 0. (19)

where ¢ = 6 —6 . 6. is the computable relative error. Equation (19) provides for an error
bound when the S-admissible stress ficld & is used as approximation to the exact solution
a. Of course, the actual relativeerrore = §—46 ¢ can be computed only when the exact
solution & is known : nevertheless, as shown in Van Keulen (1991) the computable relative
error € has the same asymptotic form as the actual relative error. The symbol i || denotes
a mean-square norm for the stress tensor. which is based on the (positive-definite) comp-
lementary elastic energy functional :

6 = LhiS, 67 =800 4280, 6451070, (20)
where S = C ' is the compliance constitutive tensor and the operator {+)q is defined as:

DA s .

: \“,‘" N | five vy dvdr (21

.

fANOY) =

In the following. when the function f(x. v) can be expressed in terms of separation of
variables as f(x. 1) =/, (x)/.(1). the following notation is used :

ARV DI PR B R S Sl I (22)
where

) il

o = | eady. e = £y dy (23)

Y

4.1. Statically admissible 2-D siress distribution

Astressfield & = |4, ,.6,.. 4., isstatically admissible if it satisfies the 2-D equilibrium
eqns (1-3). Starting from the stresses obtained from a 1-D beam model (denoted by
a¥,,0%,), T an S admissible stress field can be derived by assuming &, . coincident with ¥,
and obtaining shear and transverse normal stresses by performing the integration of equi-
librium eqns (la.b) over the beam height. making use of the stress continuity (2a,b) at the

layer interfaces and of stress balance (Qabyat v = - 1 2
. h oy P
51::(”?\:(?;”[‘““ ﬁ|:'—‘([4)/n. 73;2(![‘/)_/3:. (24)
where
i) = - CFou dvs vy = — | fiadr (25)

and u(x.r) is the dimensionless axial displacement defined in eqn (10). It is easy to verify

FDisplacements. stresses and strams corresponding te the 1-D solution are marked with an asterisk.
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that. by virtue ot the overall equilibrium in the transverse direction expressed by eqn (12a),
the stress field (24) satisfies the stress balance (3a.b) at v = 12

4.2. Lower accuracy K admissible 2-D solution
With any given [-D displacement field «*. %, a K-admissible 2-D displacement field
u,, u> and the related stress field & = |§,,.6,-.6.~] can be associated, such that:

vy = w¥ o) = hu(xov). (26a)
1- (0. 0) = ¥ (. 0) = Ly(x). (26b)
vy = 0. (26¢)

Making use of eqns (6b) and (26a.¢) the transverse extension for each layer is obtained
in the form:

R T en

Theretore. by integrating eqn (dc) making use of interface compatibility condition
(5b). the following expression for the transverse displacement is obtained :

v
i = L“u; ([ ) A L

" Clian
Au-(vy) = [ (i! —u. dr. (28)

The second term i egn (28a) represents the transverse deformation of the beam related
to the Poisson effect. The addition of this term is essential to obtain a bound on the error
approaching zero when /i L. — 0.

From eqns (4). (6). (260) und (28) the tollowing K admissible stress field is derived :

H

. / Ciia- h - Cioe . Y =
)H:(uu(l"' ¢ C l” 0T ("T:*(DJ:QL Auz,. 6y =0.
il S L R

(29)

It is worth noting that the addition of A, in eqn (28a) gives rise to a “spurious”
contribution for the shear stress &,- in eqn (29b). In fact, as will be shown in Section 6, the
shear stress &, does not represent an improvement over that given by the 1-D model and,
In some cases. can be even worse than the original 1-D shear stress.

Following Koiter (1970). the consistency of a [-DD model requires the possibility of
constructing 2-D S and K admissible stress fields whose relative error approaches zero
when /1 L — 0. Equations (24) state that &, is the largest component of the stress tensor,
so that the consistency requirement can be fulfilled only if the S and K admissible normal
stresses &, and &, of eqns (24a) and (29a) coincide. This condition yields the following
expressions for the Young modulus of the 1-D constitutive law (13):

. Ciiar N
Croo= 00 ] - .
T CoCa (30)

222/

which represents the direct extension to orthotropic materials of the classical reduced
stiffness coetlicient. For a beam under plane stress (see eqns 7). eqn (30) reduces to
C¥ 1 =E,. As for the shear modulus. the most natural choice is to assume
C¥y, = ... 50 that the first term at the RHS of eqn (29b) reduces to the 1-D shear
stress afs.
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Due to the relative magnitude of the stress components given by eqns (24), since ¢,
has been set equal to &,,. the computable relative error bound ¢ is dominated by the
difference of shear stresses reported in eqns (24b) and (29b) and can be given the following
asymptotic form for i L — 0

i h

(! /'+()(1 }. (3

L

where the coefficient C', given by:

- <Shaafn ‘Eé /l)”fﬂk + (.WIIIA“;\)I>SI (32)

<S| i (‘1*1’- L

depends on the beam lamination and loading condition as well as on the model used for
the 1-D solution. This coeflicient. which will be named ~1-order accuracy coefficient™ in the
following, can be used to estimate the accuracy of the 1-D model.

The displacement field u,. 1> of eqns (26a) and (28) represents an extension to shear-
deformable multilayered beams of the modified Kirchhoff-type displacement field obtained
by Koiter (1970} in the framework of the classical theory of isotropic shells. In particular,
eqn (26b) states that the transverse displacement «* = Lj(x) given by the 1-D model has
been assumed as the midplane displacement of the beam when considered as a 2-D body.
Of course. this is not the only possible choice. For instance. Reissner (1944) considered
n(x) as the transverse displacement weighted over the beam height by the function 1-(2y)*.
With reference to classical plate theory. Rychter (1993) derived an infinite family of possible
weight functions that can be adopted to this purpose. It is to be noted that for the problem
discussed here (a symmetrically laminated beam subject to two identical transverse loads
at the top and bottom faces) the transverse displacement u- in eqn (28) varies along v
according to an even law. so that all the proposed definitions coincide.

4.3. Higher accuracy K admissible 2-D solution

By inspection of egqns (31) and (32) it is evident that in order to improve the error
bound it is necessary to make the shear stress @, . close to 4 .. To this purpose. a second K
admissible solution is proposed by introducing an additional term for the axial displacement
so as to make the new shear stress equal to the S admissible shear stress @,. of eqn (24b).
ie.

]
i, */1{14+([’)Au- ’ (33)

where

. I
Au, = .S”;{/V(/])UT‘

(
o

di+ "'Au:,\ dr. (34)

The first integral in eqn (34) vanishes it the shear and the normal stress distributions
a¥, 0%, given by the 1-D model satisfy the equilibrium eqns (1a), (2a) and (3a). The second
term is required to remove the “spurious™ term appearing in the shear stress (29b). The K
admissible stress field obtained from the improved displacement field (28). (33) is:

_ A _ _ Y
H+(\!l (I)AH]‘A ﬁ, T :('\\‘j(I)AHl_\V (35)

/

QA
=]

=

Hence. the difference between the S and the K admissible stress fields & and & is now
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related to terms of order (4/L)" O(&). Making use of eqns (24) and (353), an improved (II-
order) bound for the computable relative error is obtained in the form:

N
TR
& (L/). (36)

where the 11 order accuracy coefficient”™ ' is:

cl = 7<7§'.7| 1 1giililéufijétz;:z(_/é: - |7;:A“|.\)1 +25,12:C 1 Auy  (f22 — C Ileul.x)>Q

s %2 RN
SV O g

(37

The procedure used to obtain the improved displacement field is reminiscent of that
proposed by Danielson (1971) in the context of classical theory of isotropic shells. The
derivation given here can be used to obtain error bounds for any 1-D laminated beam
model based on the assumption of transverse inextensibility.

5. ERROR ESTIMATES FOR SOME 1-D BEAM MODELS

For most of the 1-D displacement-based theories, the relative mean-square error é can
be given an explicit form by deriving S and K admissible stress fields from eqns (24), (29)
and (35). In this Section. error bounds are obtained for CLT, FSDT and the higher order
theories based on the displacement field (9). (10) (Table 1).

3.1, Classical lamination theory (CLT)

Classical lamination theory, which represents the extension of the classical Euler—
Bernoulli model to multilayered beams. is based on the following displacement field and
equilibrium equations :

wF ) = - (). w¥ () = Lp(x) (38)
\ h .
M(x) = — / Chyi oy, (39)
Mol
where M(x) = " o, dy s the bending moment. Starting from the axial stress dis-

v 12

tribution a¥, given by eqns (13a) and (3&a):

h
af = - / CFyon’(x) (40)

an S admissible stress field can be obiained in the form of eqns (24), where :
Table 1. Axial displacement. higher order coordinate functions and equilibrium equations for the classical

lamination theory (CLT). first order shear deformation theory (FSDT) and the higher order models by Lo ef al.
(1977) (LHDT) and Savoia ¢ al. (1993) (SHDT)

Model w(x vy h W, (V) Equilibrium eqns
CLT 1i(x) eqn (39)
FSDT — v(X) eqns (18)
LHDT v+ )y P eqns (15)
SHDT — ()P ) (" continuous functions (eqns 62) eqgns (15)

and (63)
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fra(xo v = 0" (xX)5:(r). () = —p"(0)5.(y) (41)

and
™ 1

Saly) = ‘ CHordrs 5.y = J A
g 12 0

As for the K admissible solution, the additional transverse displacement and the related
shear stress are given by [see eqns (28) and (29b)] :

) S
Aus = —n"(¥m(y), 6. = <L1) 77 ()5,-(1), (43)
where
Crne - .
n(y) = —=rdy. §5-(v) = Cpapan(y). (44)

C

] R
Jo 2222

Hence, making use of eqns (24), (40). (41) and (43b). the asymptotic form of error
bound of eqn (31) is obtained. where the corresponding accuracy coefficient is:

C - ‘5:’7”:>/ {81500 —‘:\'»:()‘)]:>/,~ (45)
CLTe — ST T e T T
l /Y S Ry o

Making use of eqn (39). the first term at the R.H.S. of eqn (45) can be set equal to
L/l,, where /, 1s the solution wavelength which depends on the only loading condition
through the axial variation of bending moment M(x) and shear resultant 7(x) = M!"}(x) :+

(M,

= (46)
M1,

/

Correspondingly. the lower order error bound can be rewritten as a function of the
height-to-wavelength ratio:

h _ <S|1|3[S,37(7:1')'512(}'?_]5,&

| A &l
PR (“,(H—‘/ . Cion = i .
! S Ghr

(47)

As for the improved error bound. CLT gives o* = 0. and the additional axial dis-
placement Au, defined in eqn (34) reduces to:

.

Auy = "), o(y) = ' (S120:8 (") —n())dr. (48)

Finally, the II-order error bound can be expressed us

. e
o x ClL ( _ 49
€ CLT \/: ) (49)

where

+Bracket stands for derivative with respect 1o v . so that M = A7 - | L
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M
o= (50)
/ ‘[‘7 7\/
and
\9| 1 1(1 1 1+ Sava[F+ G 1::1"]:_+ 28112:Cn 5 + Chi220D

al _
Cin, =

S T2 2
S Gl

It is worth noting that coefticients (!, and Cli 1, defined in eqns (47b) and (50b)
depend on the beam lamination only. whereas the dependence on the loading condition is
restricted to the definition of solution wavelengths /, and /5.

5.2, Higher order shear deformation theories

The procedure described in Section 4 can be used to obtain error bounds for any higher
order shear deformation theory (HSDT) governed by equilibrium eqns (15). The analytical
details are reported in the Appendix.

The shear stress obtained from the 1-D model can be written in the form:

(N
ot = [ ] e’ =sh o) (51)
where the functions :
; d 1 . d T
AR (,“):(‘w:u(_!/“F v € ) sln,,(,")-—(wl:l:(gl_ wE,u) (52)
dv dy

represent the variations over the beam height of the contributions to the shear stress g},
related to ¢” and y". respectively. and ¢.. e.. g,. E, are sets of coefficients which depend on
the beam lamination and the set of coordinate functions adopted. Moreover, the S admiss-
ible shear and transverse normal stress. the additional transverse displacement and the K
admissible shear stress are obtained n the form :

G..= (f )/ A ( j, )[\‘ N (,l'](,’)”‘51\‘:”/(}')1“]~

(f)’ = e

\ 1.
At = —n {11 +nl (g
= ey R
7= ) [vos 0o =S, (n)%"]. (53)

where §-. (1), 5.5, (1), n (v) coincide with & -(v). 5..(r). n(1r) defined in eqns (42) and (44a).
and :

- y O
Sia (V)= CHogdr. s (0= Sih dr. my(y) = [ E]l"‘//dﬁq

Joa o TASRRES]
S ) = =8 (Y s 815,00 = =85, (1) +Craang (3). (54)

Finally. making use of eqns (14a). (31) and (53a.c). the asymptotic error estimate (31)
1s recovered. with :



Accuracy o [-D models for multilay ered composite beams 533
ISl s =07~ (8], =812

M N 1200 12 12y 7Y 1 2 1207 4 Q ~

Chispr, = - - . {55)

1

ST v"j O G

where the condition y ~ (/1 L)" ¢ is used to remove the normal stress related to the higher
order contribution ¥' 3" at the denominator [see egns (A3) in the Appendix]. Finally,
making use of eqns (AS). the lower order error bound can be written as:

e - T =1 2
A h . S =y ) =8, =8 )e 0] ),
e x Chspr, - Chispy = T

/’ S !(V*EZ\I,“::"

/i

(56)

where /, is the solution wavelength defined in eqn (46). Equation (56) gives error bounds
for 1-D models based on displacement field (9). (10). For instance. FSDT retains the cross-
sectional rotation ¢(x) only in the axial displacement. and the second term in eqn (56)
disappears.

As for the improved K admissible solution. the (dimensionless) additional axial dis-
placement is

A, = (el vy (57)

where

r(y) = ' [Si0a(5 =) —nldre v () = [Swn~(§w1.,,‘51:.//)_“w] dy  (58)
0

.

and the improved error cstimate can be written in the form ot eqn (36). where

Pl A1l ’ /] . S \ }'-n (l) + Fliw' 1.>Cu/ ¢, +c4,ll FI,//(_I.)CU/' (112' >h
(G (Hsm»( < Chisnr = ST T (59)
) S CHR T

and F,., F,. F, are sets of funcuons defined over the beam height. which are not here
reported for the sake of brevity. For instance. for FSDT egn (59b) reduces to:

(FSDIY —

All - <;541\l§(.1‘1 0 S [ + O \::’.J'\ *':5u::('1:|11}[fzj\-ﬂ‘ClVlV::l'!l%
SO

(60)

Coeficients Cliygpr, and Clligy, reported in eqns (36b) and (39b) depend on the beam
lamination as well as on the set of coordinate functions. Hence. the error bounds defined
in eqns (56a) and (59a) are usetul to estimate the accuracy of stress fields derived from
different 1-D models. In the numerical examples (Section 7) two higher order theories will
be considered, presented in Lo er af. (1977) and Savoia et af. (1993).

The Lo--Christensen-Wu higher-order theory (LHDT) adopts a set of power functions
of increasing (odd) order detined over the whole beam height as coordinate functions. The
procedure developed in the present paper applies to it if a linear combination of power
functions is adopted, satisfying the orthogonality condition (17). The main drawback of
this model is the fact that. even though a complete set of coordinate functions is adopted.
itis no able to yield accurate transverse shear stresses [see. for instance, Savoia er al. (1994)].
In fact, using C " -continuous coordinate functions. the shear stress discontinuity at the
layer interfaces is equal to the value of the shear strain multiplied by the jump of the shear
modulus [see eqn (14b)]:
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T m e v dwT
lo] =[Ciaa 260 = ‘Cllllj(ﬂ _(P+—d}—,

x) (61)

and cannot be reduced even if a large number of coordinate functions is adopted. Hence,
the I-order accuracy error bound, being dominated by the difference of shear stresses, is
expected to be rather wide for laminated beams.

The higher order theory proposed by Savoia ef al. (SHDT) overcomes this drawback
by adopting a set of coordinate C°-continuous functions defined as:

r:-ll‘-

- I\l,‘;“ v,
l//”('l’) = wu(,"’) - "1-__.,1.— Z . l///(_}') ] n= l' e ’nf (62)

i j= Iu/fl,’I,

where functions ,(1) are obtained from the following recursive formula:

= &% 5y dyp =1...., : 6
dv GO 1) Yo " “

d&n C'I 212 9)1 "" Cilkli(;f) T

! ("] 1yl
with , = 1. Equation (63) is integrated making use of the interface conditions [§,] = 0 at
y=r(=1..... N—1) and the (weighted) null mean value condition:

mo2

J ; C* o, dy =0, n=1,.... n, (64)
-

Equations (62) and (63) correspond to the exact definition of the cross-sectional
warpings for the interior problem of a transversely indeformable multilayered beam subject
to a transverse load varying according to a polynomial law. In particular, a number
n, = int[(p+ 1)/2] of warping functions provides for the exact solution for a transverse load
of order p. The coordinate function i, is given by a polynomial law of order 2n+ 1 through
each individual layer and presents discontinuous derivative at the layer interfaces, as is
required to satisfy the shear stress continuity reported in eqns (2a).

6. A SIMPLE CASE: CONSTANT SHEAR RESULTANT

The simple case of a multilayered beam subject to a constant shear resultant 7 is useful
to understand the mechanical meaning of the additional axial and transverse displacements
Au, and Au, derived in Section 4.

The 1-D solution given by SHDT is considered first, which yields the exact solution
(under the assumption of transverse inextensibility) in the form of eqns (9) and (10), with
one warping function only [#, = 1ineqns (62) and (63)]. Making use of boundary conditions
E=0,¢9=0atx=0and ¢ =0at x =1, the transverse deflection, the average rotation
and the warping amplitude are obtained in the form:

Hv) = Ln(xv) ! <L\3 ’(1 x)+ rr
ui(x) = Ln(x) = - ——— (= x{ | — = 7%
B ] 2C .1, h) 3 Chak h

) T L (l X
QY) = e Ay - -
C’i]llln hz 2)

\

(x) b ! t (65)
X) = — 7 —- ~— = COnst,
X wa C’[ 2 |:/\’h

where & 1s the shear correction factor for the multilayered beam defined as:
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D.D, —D-
— WHW T ) (66)
D i

i

k

Following the guidelines of Section 4. the following S admissible stress field :

T L D, d A
5'113(‘?‘111 0 RN (713:(}312[] = l//:i T 5'2120 (67)
Chyofoh D, dy |C -, kh
and refined displacement field :
, T oy
= hl—ov+ypp(vi]— - - ' m(Vydy
( /\ 14y Je
T LN L X r L Ix L
U = X1 )+ X+ “n,.(y) (68)
2(':IH',/‘ <\/I) ( 3 (.”;ZI.“’]( /I (.‘/\]\Ill\ /I '

are derived. Since the additional term in the axial displacement (68a) is constant along x.
eqns (35) state that the K admissible stress field. which can be obtained from eqns (68),
coincides with eqns (67). Hence, eqns (67) and (68) represent the exact 2-D solution of the
problem. Note that the SHDT 1-D solution of eqn (65) differs from the exact displacement
field (68) for terms related to the Poisson coefhicient only. It can be verified that for
homogeneous and three-layered isotropic beams this solution reduces to those obtained by
Timoshenko and Goodier (1970), and Sierakowski and Ebcioglu (1970), respectively, by
making use of Airy stress function.

For a constant shear resultant. the exact 2-D solution can also be obtained starting
from the 1-D displacement field given by FSDT or even by CLT. For instance, starting
from eqns (38) and CLT lateral deflection :

T SANEN N
=1Ly = X Lx, 69
u# 7(\) T (h) X ( 3/)-*-(/% X (69)

where @, 1s the rotation ut x = 0. the following 2-D displacement field is derived :

T /Ly o/ I
), = — oo (/1) \(\l - 2')-14 ¢ I J” Siaa8 (58 d)
: ) nATYdr— o0
QIR ST
T % S AR v L
T 1 P R L T Fp (70)
2 /‘ ] ;/ ‘ L /1 ) (\ 3) (‘/l W /7 0

which coincides with egns (68). apart from a rigid body rotation given by :

T
Coy ki

Oy =

(71a)

In particular, the second term at the right-hand side of eqn (70a) represents, to the
accuracy of the rigid body rotation ¢,. the cross-sectional warping due to shear strains (see
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(FSDT) (CLT)

@

®) ©
Fig. 2. Cross-sectional warping due 1o shear strains for a typical three-layered beam with a soft
mternal core.

Fig. 2). The same displacement field can be obtained starting from FSDT. In this case, the
rigid body rotation turns out to be (see Fig. 2):

T /1 1
On = - ) (71b)
' Chagh (/‘ D”‘)

7. NUMERICAL EXAMPLES

In this section. the accuracy of classical and higher order 1-D models is estimated with
reference to simply-supported multilayered beams under sinusoidal transverse load :

DY) = p, s x, X, (72)
where %, = nn. For higher order 1-D models. the solution can be derived by setting :
X)) =, 8IN %X O{Y) = 0, Cos%, N, LX) = YL, COS %, X (73)

so reducing eqns (13) to an algebraic system for the unknown coefficients 1,,. @,, %,. In this
case. the solution wavelengths defined in eqns (46) and (50a) are /, =/, = [ = L/nm and,
correspondingly. for all the 1-D models ' = ' nrand C" = C"/(nn)°.

In the numerical examples. n =1 is considered and three different sets of elastic
coeflicients are adopted. corresponding to two isotropic materials (denoted by I1 and 12)
and an orthotropic (O1) material:

() E, = Ev = 200GPa. G, =77GPa. t,, =0.3;

(I2y K, =F. =10GPu. G- =4GPa.  r,, =025;

(O K, =200GPa. £, =12GPa. G, =8GPa, ¢, =03
Figures 3-6 show the actual relative errors ¢' and ' [with respect to the exact 2-D
solution by Pagano (1969)] as a function of the beam height-to-length ratio, for a single-
layer isotropic (I1) beam. a single-laver orthotropic (O1) beam, a three-layered isotropic
(I1-12-11) beam and a three-layered orthotropic (O1-12-01) beam. The errors have been
computed for CLT. FSDT. LHDT and SHDT. As for the two higher order theories, the
number of terms adopted for the axial displacement is reported in parentheses. For each
theory. dashed and solid lines denote l-order and 11-order error bounds, respectively. All
the figures confirm the asymptotic behavior for L 1 — x predicted in Sections 4 and 5, that
is of O(h L) for the I-order error bounds and O(4°; L*) for the II-order error bounds. The
l-order and Il-order accuracy coeflicient €' and C" for the four beams considered are
reported in Tables 2 and 3. Since the I-order error bounds (dashed lines) are dominated by
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Fig. 3. Isotropic single-layer beam under sinusoidal transverse loading : actual relative error bounds
versus length-to-height ratio for classical lamination theory (CLT), first order shear deformation
theory (FSDT) and for Lo et al. (LHDT) and Savoia er a/. (SHDT) higher order models. 1 and 2
stand for I- and II-order error bound, respectively.
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Fig. 4. Orthotropic single-layer beam : actual relative error bound versus length-to-height ratio for
CLT, FSDT, LHDT and SHDT. 1 and 2 stand for I- and [l-order error bound, respectively.
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Fig. 5. (a.b) Isotropic three-layered beam : actual relative error bound versus length-to-height ratio
for CLT. FSDT, LHDT and SHDT. | and 2 stand for I- and Il-order error bound, respectively.
The number of coordinate functions adopted for axial displacement is reported in parentheses.
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Fig. 6. (a.b) Orthotropic three-layered beam : actual relative error versus length-to-height ratio for
CLT. FSDT. LHDT and SHDT. 1 and 2 stand for [- and 1I-order error bound. respectively. The
number of coordinate functions adopted for axial displacement is reported in parentheses.

Table 2. I-order accuracy coefficient ¢! for single-layer isotropic (I1) beam. single-layer orthotropic (O1) beam,
three-lavered isotropic (11 -12 I1) beam and three-layered orthotropic (O1-12-O1) beam

&=l [l Jo2n A Joon
; TJo2n BZod Jo2n
1-D model (n (O1) (11-12-11) (01-12-01)
CLT 0.5255 1.586 1750 1.841
FSDT 0.1860 0.6379 1.619 0.9973
Lo et al (1) 0.0360 0.01162 1235 1171
Lo et al (2) 0.0360 0.01162 0.7509 0.2869
Lo e al (3) 0.0360 0.01162 0.7130 0.2405
Savoia er al (1) 0.0360 0.01162 0.03559 0.01165

Table 3. H-order accuracy coefficient C" for single-layer isotropic (I1) beam. single-layer orthotropic (O1) beam,
three-layered isotropic (I1--12- [1) beam and three-layered orthotropic (O1-12-O1) beam

s Clny 8 Joan
: Blog Jon
1-D model (I (o1 (01-12-01)
CLT 0.2988 2.561 3.428
FSDT 0.1168 0.6501 1132
Loeral (1) 0.1010 0.4108 0.3729
Loeral(2) 0.1010 0.4108 0.3720
Lo etal (3) 0.1010 0.4108 0.3651
Savoia er al (1) 0.1010 0.4108 0.3584

the difference of shear stresses [see eqn (32)]. the higher order theories represent a notable
improvement over both CLT and FSDT. For instance, for the Ol-beam, CLT and FSDT
yield coefficient C' even 136.5 and 54.9 times greater than higher order theories (see Table
2).

It is worth noting that, for single-layer beams, the coordinate functions adopted by
the two higher order models are the same, so that they give exactly the same results.
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Moreover. the asymptotic behavior is independent of the number of terms adopted. In fact,
for Lih — » the load wavelength tends to infinity [sec egn (72)]. and the corresponding
solution requires only the (first) cubic Legendre’s polynomial for the axial displacement.
The behavior of two higher order models is completely different for laminated beams. For
instance. the error related to SHDT is substantially the same for I1-beam and T1-12-11-
beam as well as for Ol-beam und O1-12 Ol -beam (see Table 2), and it is still independent
of the number of terms adopted. In fact. the first coordinate function ¥,( 1) defined in eqns
(62) and (63) provides for the closed form solution l'or a uniform transverse load for any
beam lamination. On the contrary. LHDT does not satisfy the shear stress continuity at
the interfaces and yields an error more than 20 times greater than SHDT for both laminated
beams (see Table 2). Moreover. CLT gives an error 49.2 and 1358 times greater than SHDT
for the isotropic and the orthotropic laminated beams. respectively.

Finally, Figs 3-6 clearly show that the asymptotic behavior of the error bounds
predicted by eqns (31) and (36) is valid for L /1 — 7. whereas 1t can lead to erroneous
conclusions when beams of finite length are considered. For instance, Figs 4 and 5 show
that, for laminated beams, the [-order error bound for SHDT is narrower than the I1-order
error bound for FSDT if L i < 200. and even narrower than the II-order error bound for
LHDT(3)if L/h < 50. Moreover. for classical theories and LHDT. the [1-order error bound
can be even wider than the [-order error bound if thick (4. i < 10) beams are considered.
This is not the case of SHDT. where the improved K-admissible solution represents an
improvement over the lower accuracy solution for the whole range of L/h.

In Figs 7 and 8 the sheur stress distributions at v = 0 given by 1-D models for a thick
(L/h = 4) orthotropic O1 12-Ol-beam are compared with the exact solution. It is worth
noting that SHDT yields very accurate shear stresses (Fig. 7a). whereas this is not the case
of LHDT (Fig. 7b). due to the jumps at the laver interfaces which cannot be reduced by
increasing the number of coordinate functions. Figure 8 shows the stress distributions
derived from FSDT. i.e. the busic 1-D solution. the S admissible and the lower accuracy K
admissible solutions. As announced in Section 4. the contribution to shear stresses included
in the K admissible solution does not represent a significant improvement over 1-D solution.
On the contrary. the S admissible solution is a good approximation of the exact solution.
This circumstance represents the main motivation ot Danielson’ technique of deriving the
improved K admissible stress field by making the related shear stress equal to the S
admissible shear stress.

For the three-layered isotropic (11 12 11) and orthotropic (O1-12-O1) beams, the
coefficient C'is reported in Fig. 9a.b as a function of the face thickness ratio 8, = 2d/h. For
the isotropic beam (Fig. 9a). SHDT vyiclds coeflicients ¢! which are substantially inde-
pendent of d, (C'= 0.0306 for 6,=0 and = 0.0360 for 4, = ). On the contrary. the
accuracy of both classical theories and LHDT strongly depends on the relative thicknesses
of faces and core. For instance. ' for FSDT is equal to 0.1851 for homogeneous beams
(6, =0 and 9, = 1) and rises up to 1.6536 tor o, = 0.5. In fact, the assumption of linear
variation of axial displacement over the beam height breaks down for l[aminated beams. As
for LHDT. Fig. 9a shows that for 4, > 0.7 the addition of more terms in the displacement
expansion does not represent a significant improvement over FSDT, whereas it does for
0, < 0.5. For the orthotropic beam (Fig. 9b) similar conclusions can be drawn. In this case,
the maximum error occurs for 8, = 0.6 for classical theories and for 6, = 0.8 for LHDT(3).
On the contrary. C' given by SHDT decreases monotonically from o, = 0 (C' = 0.0306) to
3, = 0.6 (C'=0.0115) and is almost constant up to ¢ = 1 (C' = 0.0116).

For the same two laminated beams. coeflicients ' are reported in Fig. 10a.b. Note
that the accuracy of LHDT significantly depends on the beam lamination : for the isotropic
beam with 9, < 0.2 the accuracy of LHDT(3) and SHDT(1) are comparable whereas, for
5,=0.8. C" for LHDT(3) is 13.7 times greater than for SHDT(1).

Finally, coefficients C'and C" for laminated isotropic beams with o, = 0.4 are reported
in Fig. 11a and b as a function of the Young modulus ratio r, = E'"'E'? of external layers
and internal core. For the core. E'*' and G'' correspond to I12-material whereas, for the
external faces, Young modulus £'" ranging from 0.02 £ to 20 £ and shear modulus
G'" = E'"/2.5 are considered. As for SHDT. the [-order accuracy coefficient (Fig. 11a)
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Fig. 7. (a.b) Shear stress distributions d,, = ¢,.(0. )/ p, L for the orthotropic (O1-12-Ol) beam.
The resuits given by FSDT. LHDT and SHDT are compared with the exact 2-D solution by
Pagano (1969). The number of coordinate functions adopted for axial displacement is reported in

parentheses.
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Fig. 8. Shear stress distributions ¢,. = ¢.(0.1}h.p,L for the orthotropic three-layered beam
obtained by refining the results given by FSDT: 1-D solution, S admissible and improved K
admissible solution. lower accuracy K admissible solution.

weakly depends on rg, varying from 0.0197 for r, = 0.02 to 0.0330 for rp = 20. On the
contrary, the accuracy of all the other theories varies significantly if external faces softer or
stiffer than the core are considered. For instance, C' for LHDT(3) is always less than 0.0675
for rp < 1, but it strongly increases when stiff faces are considered, raising up to 0.7168 for
rg = 20. Finally, Fig. 11b confirms that the improved K admissible solution represents a
significant improvement for classical theories and LHDT. In fact, when r; < 2 (rz < 10),
C" given by FSDT (LHDT) are comparable with that given by SHDT.

CONCLUSIONS

The Prager-Synge hypercircle method has been used to derive error bounds for classical
and higher order laminated beam theories. A statically admissible and a lower accuracy
kinematically admissible stress field are derived, whose relative mean-square error is O(h//)
for A/l — 0. Then, a generalization of Danielson’s technique to orthotropic multilayered
beams is given, in order to obtain an improved kinematically admissible stress field and a
corresponding asymptotic form for the relative error of O(h%/1%). Two coefficients C' and
", named I- and Il-order accuracy coefficients, are defined and employed to estimate the
accuracy of stress fields derived from 1-D models. These coefficients are given in explicit
form for CLT, FSDT and higher order theories by Lo et al. (1977) (LHDT) and Savoia et al.
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(1993) (SHDT). and are quantitatively computed for multilayered beams under sinusoidal
transverse loading.

The examples presented show that. unlike the single-layer models based on C*-
continuous coordinate functions (CLT. FSDT. LHDT), the accuracy of SHDT is sub-
stantially independent of the beam lamination and degree of orthotropy of the individual
layers. Moreover. the I-order error bound derived from SHDT can be even 150 and 20
times narrower than those given by CLT and LHDT, due to the very accurate representation
of shear stresses over the beam height. On the contrary, the improved axial displacement
represents a good improvement tor LHDT, so that the corresponding error bound is only
slightly wider than for SHDT.

In the numerical examples. it has been shown that even for isotropic laminated beams,
the error bound of O(h°. L*) for FSDT and LHDT can be much wider than the error bound
of O(h.L) for SHDT if L-h < 200 and L h < 50, respectively. This circumstance represents
the main motivation to develop refined 1-D higher order beam theories, yielding ab initio
accurate stress distributions.

The proposed error bounds apply to displacement-based models based on the kine-
matic assumption of inextensibility in the transverse direction. This assumption is par-
ticularly appropriate for orthotropic beams. For instance, Sayir (1980) performed an
asymptotic expansion of 2-D elasticity equations for homogeneous strongly orthotropic
materials [E, G,» = O(H* L")]. obtaining a set of displacement equilibrium equations
where the transverse displacement is constant through the beam height. Moreover, in
Savoia and Tullini (1994) it has been proved that both the interior and boundary exact
solutions reduce to those given by the 1-D theory when G, E, — 0.

Acknowledgement --The  tinancial support ol the (Italian) National Council of Research (CNR-contr.
93.02254.CT07) and of the Human Capital Programme (contr. No. CHRX-CT93-0383-DG 12 COMA) is grate-
fully acknowledged.

REFERENCES

Andreev. A. N.and Nemirovskii. Y. V. (1977). On the theory of multilayered elastic anisotropic shells. Izv. Akad.
Nauk. SSSR. Mekh. Trerd. Tela 12,87 96 (Engl. transl. Mech. Solids 12, 73-81).

Chepiga. V. E. (1977). On constructing a theory of multiluyered anisotropic shells with prescribed arbitrary
accuracy of order i*. [z, Akad. Nauk. SSSR. Mckh. Trerd. Tela 12, 113120 (Engl. transl. Mech. Solids 12,
98-103).

Choi. . and Horgan. C. O. (1977). Samt-Venunt's principle and end effects in anisotropic elasticity. J. Appl.
Mech. ASME 44, 424 430).

Cicala. P. (1962). Consistent approximations in ~shell theory, J. Engng Mech. Div.. Proc. Am. Soc. Civ. Eng. 88,
45-74.

Danielson. D. AL (1971}, Improved error estimates in the lincar theory of thin elastic shells. Proc. Kon. Ned. Akad.
B74, 294-200.

Duva. J. M. and Simmonds. | G. (1990). Elementary. static beam theory is as accurate as vou please. J. Appl.
Mech. ASMES7, 134137

Duva. J. M. and Simmonds. J. G. (1991). The usetulness of elementary beam theory for the linear vibrations of
layered. orthotropic elastic beams and corrections due to two-dimensional end effects. J. Appl. Mech. ASME
58, 175-180.

Duva. J. M. and Simmonds. J. G, (1992). The influence of two-dimensional end effects on the natural frequencies
of cantilever beams weak in shear. J. Appl. Mech. ASME 89, 230 232.

Koiter, W. T. (1970). On the foundation of the linear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wet.
B73, 169- 195.

Ladevéze. P. (1976). Jusutication de la theorie lincaire des coques élastiques. J. Mécanique 15, 813-856.

Ladevéze. P. (1980). On the validity of linear shell theories. Theory of Shells (Edited by W. T. Koiter and G. K.
Mikhailov). pp. 367 391. North-Holland. Amsterdam.

Ladevéze. P. and Pecastaings. F. (1988). The optimal version of Reissner’s theory. J. Appl. Mech. ASME 55, 413—
418.

Levinson. M. (1981). A new rectangular beam theorv. J. Sound Vibr. 74, 81-87.

Lewinski. T. (1987). On refined plate models based on kinematical assumptions. Ing. Archiv. 57, 133-146.

Librescu. L. {1967). On the theory of anisotropic elastic shells and plates. fnr. J. Solids Structures 3, 53-68.

Lo. K. H.. Christensen. R. M. and Wu. E. M. (1977). A higher-order theory of plate deformation : II) Laminated
plates. J. Appl. Mech. ASME 44, 669 676,

Murakami. H. (1986). Laminated composite plate theory with improved in-plane response. J. Appl. Mech. ASME
53, 661-666.

Nordgren, R. P. (1971). A bound on the error in plate theory. Quart. Appl. Math. 29, 587-595.

Nordgren. R. P. (19721, A bound on the error in Ressner’s theory of plates. Quart. Appl. Math. 30, 551--556.



Accuracy of 1-D models for multilayered composite beams 543

Pagano. N. J. (1969). Exact solutions tor composite laminates in cyvlindrical bending. J. Compos. Mater. 3, 398-
41].

Podio Guidugli. P. (1989). An exact derivation of the thin plate equation. J. Elasticiry 22, 121-133.

Prager, W. and Synge. J. L. (1947). Approximation in elasticity based on the concept of function space. Quart.
Appl. Math. 5, 241-269.

Rasskazov. A. O.. Sokolovskaya. 1. [. and Shul'ga, N. A. (1983). Comparative analysis of several shear models
in problems of equilibrium and vibrations for multilayered plates. Priklud. Mekh. 19, 84-90 (Engl. transl. Sor.
Appl. Mech. 19, 633-638).

Reddy, J. N. (1987). A generalization of two-dimensional theories of laminated composite plates. Commun. Appl.
Num. Meth. 3, 173-180.

Reissner, E. (1944). On the theory of bending of elastic plates. J. Marh. Phys. 23, 184-191.

Reissner, E. (1963). On the derivation of the theory of thin elastic shells. J. Marh. Phys. 42, 263--277.

Reissner, E. (1985). Reflections on the theory of elastic plates. Appl. Mech. Rer. 38, 1453--1464.

Reissner, E. and Stavsky. Y. (1961). Bending and stretching of certain types of heterogeneous aelotropic elastic
plates. J. Appl. Mech. ASME 28, 402-408.

Rychter, Z. (1987a). An engineering theory for beam bending. /ng. 4rch. 58,25 34

Rychter, Z. (1987b). On the accuracy of u beam theory. Mech. Res. Commun. 14, 99-105.

Rychter, Z. (1987¢c). A sixth-order plate theory. Derivation and crror estimates. J. Appl. Mech. ASME 54, 275-
279.

Rychter, Z. (1987d). A refined bound on the error of Reissner’s plate theory. Ing. Archic 87, 277-286.

Rychter, Z. (1987¢). Error estimates for a sixth-order theory of plate bending. J. Engng Math. 21, 263-270.

Rychter, Z. {1988a). An improved error estimate for Reissner’s plate theory. Int. J. Solids Structures 24, 537-544.

Rychter, Z. (1988b). A simple and accurate beam theory. Acra Mechan. 75, 57-62.

Rychter, Z. (1992). A family of accurate plate theories. Mech. Res. Commun. 19, 505-510.

Rychter, Z. (1993). Generalized displacements and the accuracy of classical plate theory. fnr. J. Solids Structures
30, 129--136.

Savoia, M. and Reddy. J. N. (1992). A variational approach 1o three-dimensional elasticity solutions of laminated
composite plates. J. Appl. Mech. ASMES9, S166-S175.

Savoia, M. and Tullini. N. (1994). A beam theory for strongly orthotropic materials. submitted.

Savoia, M., Laudiero. F. and Tralli. A. (1993). A refined theory tor laminated beams- Part I A new high order
approach. Meccanica 28, 39- 51,

Savoia, M., Laudiero, F. and Tralli. A (1994). A two-dimensional theory for the analysis of laminated plates.
Computar. Mech. 14, 38-51.

Sayir. M. (1980). Flexural vibrations ot strongly amsotropic beams. /ng. Arch. 49, 309-330.

Sierakowski. R. L. and Ebcioglu. I. K. (1970). On interlaminar shear stresses in composites. J. Compos. Mater.,
4, 144-149.

Simmonds, J. G. (1971}. An improved estimate for the error in the classical linear theory of plate bending. Quart.
Appl. Math. 29, 439--447.

Timoshenko, S. P. and Goodier. J. N. (1970). Theory of Efusticity. 3rd Ed. McGraw Hill. New York.

Truesdell. C. and Noll. W. (1965). The non-linear field theories of mechanices. In Encyclopedia of Physies (Edited
by S. Flugge). Vol. lII. 3. Springer. Berlin.

Van Keulen, F. (1991). A bound on the error in classical theory of laminated plates. Int. J. Engng Sci. 29, 869—
882.

Whitney, J. M. and Pagano. N. I (1970). Shear deformation in heterogeneous anisotropic plates. J. Appl. Mech.
ASME 37, 1031-1036.

APPENDIX
Equations (15) are rewritten as tollows
) D.. D i)
)+ = ().
D CoD
e 110
) I.o" = .
1 1(\ I ) % i
Coy iy D
- I (Al)
IS ChoDoh
where T(x) = - L | p(X)dx+ 7, 1s the shear resultant and matris A 1s defined as
Jo
D,D.-D, D
A= ‘—'**Ef . (A2)

From eqns (Al) the average shear deformation n - @ and vector g can be expressed in terms of second
derivatives of ¢ and y :

‘ 7_’/1“ L, , _//7‘ L . A3
poo={ e e x= () B reo]. (A3)

where
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E, G, L, e ST (A4)
o . "D,
1212 1212
i C.,, DI C’ DIL,A"'D,
&= - :il‘b;gA 'L, . F/\:_%<J—w—w+l)lﬂ“
1212 Chas Dv\.')

Then. making use of eqns (14) and (A3) the shear stress can be written in the form of eqn (51). Finally, substituting
eqns (A3) in eqns (Ala,b). straightforward algebra yields:

L 2 LZ
R VIR P Sy V) (AS)
P 3 »

where ¢, and ¢, are sets of coefficients which depend on the beam lamination and the coordinate functions adopted.



